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A B S T R A C T

Deep Neural Networks (DNNs) have powerful learning abilities on high-rank and non-linear features, and
thus have been applied to various fields, exhibiting higher discrimination performance than conventional
methods. However, their applications in enterprise credit rating tasks are rare, as most DNNs employ the ‘‘end-
to-end’’ learning paradigm, producing high-rank representations of objects or predictive results without any
explanations. This ‘‘black box’’ approach makes it difficult for users in the financial industry to understand how
these predictive results are generated, or what correlations exist with the raw inputs, leading to a lack of trust
to the predictions. To address this issue, this paper proposes a novel network to explicitly model the enterprise
credit rating problem using DNNs and attention mechanisms, allowing for explainable enterprise credit ratings.
Experiments conducted on real-world enterprise datasets show that the proposed approach achieves higher
performance than conventional methods, while also providing insights into individual rating results and the
reliability of model training. The code is provided on https://github.com/Weyne168/creditRatting.
1. Introduction

The Enterprise Credit Rating Task attempts to predict the credit
rating of a company by mining related data, which is critical to many
financial applications, such as loan, credit guarantee, and venture
investment. This problem is challenging due to the multi-source and
heterogeneous information of a company, resulting in sparse, multi-
type, and high-dimensional features. Accurate predictions depend on
effective high-rank features, which can add non-linearity to the data
and improve the performance of learning methods. For example, the
second-rank feature ‘‘profit⊗revenue’’, which is a compound indicator
that multiplies or divides the profit by the revenue, often indicates
the repaying ability of a company and is meaningful for the Enter-
prise Credit Rating Task. However, obtaining hand-crafted high-rank
features is time-consuming and enumerating various combinations in
polynomial fitting time is impossible. Thus, it is desirable to find a
comprehensive solution for automatically and efficiently generating
effective high-rank features, which is also applicable to other real-world
applications, such as medical treatment and fraud detection.

With the rapid development of deep learning, Deep Neural Net-
works (DNNs) have become increasingly popular in many fields, such as
image processing (He, Zhang, Ren, & Sun, 2016; Krizhevsky, Sutskever,
& Hinton, 2012) and natural language processing (Devlin, Chang, Lee,
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& Toutanova, 2019; Vaswani, Shazeer, Parmar, et al., 2017), due to
their ability to automatically extract valuable high-rank features from
raw data without manual feature engineering and to represent all fea-
tures with a low dimensional but more effective feature representation.
Previous studies (Golbayani, Wang, & Florescu, 2020; Guo, Cao, & Li,
2020; Hosaka, 2019) have applied DNNs to the enterprise credit rating
task for automatically learning the low dimensional representations of
company credit and predicting the company credit rating. However,
DNN-based forecasting models lack interpretability due to their com-
plex and automatic feature selection and expression. This information
asymmetry and opacity shakes the norm of fair lending, which is a
fundamental principle of the financial industry. As a result, users in
the finance field do not trust the predictions provided by a "black box"
model. Therefore, one significant challenge of using DNN models to
predict enterprise credit ratings is to provide "reason codes" to users.
For example, users should be given an easy-to-understand explanation
of why they were denied credit, especially when the decision is based
on an opaque machine learning algorithm.

In this paper, we propose a novel attention-based deep neural
network, DeepCross, to model the credit ratings of enterprises with
output readable explanations. To cope with sparse, multi-type, and
high-dimensional features, the categorical and numerical features are
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first embedded into an identical low-dimensional space, reducing the
dimension of the sparse features and allowing different types of fea-
tures to interact with each other. Inspired by self-attention (Vaswani
et al., 2017), we construct a series of novel feature crossing mod-
ules to explicitly learn effective high-rank feature combinations for
the credit ranking task. These modules take the raw feature as a
field query, the last high-rank representation as a key and the next
rank features as a value to learn the high-rank representations with
self-attention paradigm. According to the outputs of proposed feature
crossing modules in training stage, we can analyze the high-rank fea-
ture combinations bias in the dataset, and generate static explanations
to investigate the reliability of the model. Additionally, leveraging dual
attentions, i.e., attributive and temporal attention, the proposed model
adaptively indicates informative features and important time points for
samples, providing personalized explanations for a given pair of sample
and rating. Our primary contributions are summarized as follows:

• We propose to study the problem of explicitly and automatically
learning high-rank feature crossing in enterprise credit rating task
and meanwhile construct end-to-end Deep Neural Network (DNN)
based model, called DeepCross, which has good explainability for
the target problem.

• A proposed feature crossing approach based on attention-based
neural network is presented. This approach can automatically
learn high-rank feature interactions from both categorical and
numerical input features, and provide static explanations to in-
vestigate the model’s training process.

• A dual attention module is proposed to recognize the informative
features and important time points about the given samples, thus
enabling the furthering of personalized reasons for an enterprise’s
credit rating to gain insight.

• A series of experiments have been conducted to validate the
proposed model, with the results demonstrating that our approach
can achieve higher precision enterprise credit ratings than con-
ventional methods. Furthermore, our approach provides multiple
pipelines to provide users with insights into the predictive process
and results.

. Related work

The goal of this study is to propose a deep feature crossing model
o obtain accurate and explainable enterprise credit ratings, thus it is
elevant to three lines of study: (1) credit rating approaches for enter-
rises, (2) feature interactions learning techniques, and (3) attention
echanisms in the deep learning context.

.1. Enterprise credit rating

Enterprise credit rating is an intermediary service in the financial
ield, which has existed for over 100 years. A mount of approaches
as been proposed to handle this problem, and such approaches can be
ategorized into factor analysis-based methods, statistic-based methods,
nd model-based methods.

Typically, factor analysis-based methods (Mccrae & John, 1992)
re usually to score the credit-related factors of an enterprise based
n expert experience, which can be applied flexibly to qualitative
nalysis of enterprise credit. However, such methods are highly de-
endent on the subjective judgment of experts and lack the ability
f quantitative analysis for enterprise credit. Differing from factor
nalysis-based methods, statistic-based methods quantify the enterprise
redit rating based on the company’s financial indicators. For example,
he Z-Score (Altman, 2013) treats the linear weighted sum of given
inancial indicators as the credit score of the company. The weights
n the Z-Score model are calculated using the historical data of similar
ompanies. However, such methods lack generalizability because the
2

eights and score thresholds are fixed by human experts’ experience.
With the development of machine learning technologies, model-
based approaches, e.g., logistic regression (Bolton et al., 2010) and
decision tree (Xia, Liu, Li, & Liu, 2017), have been used for the en-
terprise credit rating problem. For example, logistic regression (Bolton
et al., 2010) is often used (rather than the Z-Score Altman, 2013)
to handle the large-scale credit rating task. In addition, the decision
tree (Xia et al., 2017) is also popular for the credit rating task because
it can generate interpretable decision rules. However, as the features of
companies become increasingly complex, the prediction performance of
these models based on shallow feature representations is getting harder
to be promoted. Due to the strong ability of feature representation
abilities of DNNs, recent model-based credit rating approaches have
transformed from traditional linear or nonlinear models to deep models
(Hosaka, 2019; Matin, Hansen, Hansen, & Mlgaard, 2019). Most of
these models leverage recurrent neural networks (RNN) or convolu-
tional neural networks (CNN) to learn the feature representation of
credit from raw inputs, and then use multi-layer feed-forward networks
to predict the credit ratings. Based on this basic paradigm, although a
higher accuracy can be achieved than the traditional models that use
shallow feature representations, the deep models are typically consid-
ered as ‘‘black boxes’’ that cannot provide the required explanations
of predictions. Thus, users can neither understand the meaning of the
feature representations generated by DNNs nor catch on the inference
process of DNN models. Generally, users in the field of finance do not
trust predictions obtained using ‘‘black box’’ models.

2.2. Learning feature crossing

Feature crossing is a promising way to capture the interactions
among raw features, and it is widely used to enhance the performance
of many predictive tasks, e.g., click-through rate (Song, Cheng, Zhou,
et al., 2020; Song, Shi, Xiao, et al., 2019; Wang, Fu, Fu, & Wang, 2017)
and financial analysis (Hosaka, 2019; Matin et al., 2019). The results
of feature crossing can indicate the co-occurrence of features and add
non-linearity to data, which can improve the performance of learning
methods significantly.

Factorization Machines (FM) (Rendle, 2010) and its extensions
(Guo, Wu, Wang, & Tan, 2016; Rendle, Gantner, Freudenthaler, &
Schmidt-Thieme, 2011) are well-known examples of learning feature
interactions, which were proposed to capture the first-rank and second-
rank feature interactions, and have been proved effective for many
tasks. However, modeling only low-rank feature interactions limits per-
formance improvements. Thus, some recent studies (Song et al., 2020,
2019) have been proposed to model high-rank feature interactions
using DNNs to achieve more effective feature representations. They
typically follow the paradigm of embedding and stacked DNNs, which
first represents both categorical and numerical original features by low-
dimensional vectors, and then utilizes fully-connected neural networks
to learn the representation of high-rank feature interactions from their
feature embedding. However, these approaches may result in two
issues. First, fully-connected neural networks are inefficient in terms
of learning multiplicative feature interactions (Beutel, Covington, Jain,
et al., 2018), thus they cannot obtain quality feature representation for
prediction. Second, these models learn the feature interactions in an
implicit manner, thus they lack effective explanation to answer which
feature combinations are meaningful.

In contrast, several studies have investigated learning feature in-
teractions in explicit manners. For example, Lian, Zhou, Zhang, et al.
(2018) and Wang et al. (2017) performed to learn explicit feature
interactions by taking the outer product of features at the bit-wise or
vector-wise level. However, it is important to explain which combi-
nations are useful, because enumerating all crossing features is both
impossible and unnecessary. Pursuing this leads to excessive computa-
tional complexity, and may generate irrelevant or redundant feature
interactions. In addition, the tree-based models (Luo, Wang, Zhou,

et al., 2019; Wang, He, Feng, et al., 2018; Zhu, Shan, Mao, et al.,



Expert Systems With Applications 220 (2023) 119704W. Guo et al.
Fig. 1. Overview of proposed model. The embedding layer projects both numerical and categorical features into the same low-dimensional feature space. The details of feature
crossing block are illustrated in Fig. 2, which automatically and explicitly learn the meaningful feature combinations for the task of enterprise credit rating. The dual attention
module is used to model the correlations of feature combinations and their temporal dependence.
2017) have been used to conduct meaningful feature interactions. In
such methods, the feature interaction modeling procedure is usually
divided into the feature construction and feature selection, which may
utilize different optimization criterion and result in a locally optimal
solution. Moreover, the tree-based solutions rely on some crucial hyper-
parameters, e.g., the maximum depth of tree, which setups require
expert experience about given task and datasets.

Finally, previous studies (Song et al., 2019; Tao, Wang, He, et al.,
2020) combined the power of embedding-based models and attention
mechanisms (Seo, Huang, Yang, & Liu, 2017; Vaswani et al., 2017; Wu,
Wu, Ge, et al., 2019) to learn high-rank feature interactions and identify
useful feature combinations. Differing from existing studies, we ex-
plicitly model feature interactions using a self-attention mechanism in
an ‘‘end-to-end’’ manner. Moreover, the proposed approach probes the
learned feature combinations via lasso-based feature selection (Zhao &
Yu, 2006). As a result, we can learn compact and explainable feature
combination patterns automatically.

2.3. Attention networks

Attention mechanism was first proposed in the context of neu-
ral machine translation (Bahdanau, Cho, & Bengio, 2015) and has
been proved effective in a variety of tasks, e.g., question answer-
ing (Sukhbaatar, Szlam, Weston, & Fergus, 2015), text summariza-
tion (Rush, Chopra, & Weston, 2015), and recommender systems (Seo
et al., 2017). Recently, the self-attention mechanisms (Vaswani et al.,
2017) have been used frequently to construct transformer models,
from natural language processing (Devlin et al., 2019) to computer
vision (Dosovitskiy, Beyer, Kolesnikov, et al., 2020), which leverage
multi-heads self attention (Vaswani et al., 2017) to well capture the
relationships within the features. Unlike previous methods that use
attention techniques to improve model accuracy, the proposed model
employs the latest deep learning-based attention techniques (Seo et al.,
2017; Vaswani et al., 2017) to alleviate the lack of interpretability of
deep learning methods. We employ attention techniques to explicitly
take feature crossing and adaptively select features.

3. Deep feature crossing network

In this section, we present an overview of DeepCross, a proposed
deep feature crossing network. This network can automatically learn
high-rank feature crossing for the enterprise credit rating task, and
3

identify which combinations of features have a significant effect on
the credit rating of a given company at a given time. We then provide
a comprehensive description of how low-dimensional representations
are learned explicitly for high-rank combination features without man-
ual feature engineering, which are then used to generate accurate
enterprise credit ratings.

3.1. Overview

The proposed approach aims to map a sparse, high-dimensional
feature vector into a low-dimensional space and explicitly model high-
rank feature interactions. As depicted in Fig. 1, the model takes sparse
sequential data as input, and an embedding layer projects both nu-
merical and categorical input features into the same low-dimensional
feature space. This is then fed into a series of stacked feature crossing
blocks (Fig. 2), implemented using a self-attentive neural network
and a principal feature selection module (PFS). Each feature crossing
block combines high-rank features based on a self-attentive mech-
anism, and the PFS module selects useful feature combinations to
avoid irrelevant and redundant interactions and reduce computational
complexity. By stacking multiple feature crossing blocks, different ranks
of feature combinations can be generated, forming the low-dimensional
representations.

The outputs of the feature crossing blocks are used to estimate
a company’s credit rating. To ensure accurate and understandable
estimations, a dual attention module is added after the feature crossing
stage. This module models the correlations between the credit rating
and the feature combinations, as well as the temporal dependence of
the credit rating.

3.2. Input and embedding layer

We treat the raw attributes of a company as a sequential data, and
represent the 𝑡-th element in the sequence as a sparse vector 𝑣𝑡 =
[𝑎1; 𝑎2; ...; 𝑎𝑛], which is the concatenation of all feature fields including
both numerical and categorical attributes. Here, 𝑛 is the total number
of feature fields, and 𝑎𝑖 is the attribute representation of the 𝑖-th feature
field. If the 𝑖-th feature field is categorical (e.g., 𝑎1 in Fig. 1), then 𝑎𝑖 is
an one-hot vector; otherwise, 𝑎𝑖 is a scalar, as the 𝑖-th feature field is
numerical (e.g., 𝑎𝑛 in Fig. 1).

Common methods to handle sparse and high-dimensional categor-
ical features involve projecting them into a low-dimensional space.
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Inspired by word embedding (Mikolov, Chen, Corrado, & Dean, 2013),
we treat each field of the categorical attributes as a lexicon, and
each possible value in this field as a word. We then learn the low-
dimensional vector representation for each categorical attribute with
the embedding layer. Specifically, we represent a given categorical
feature 𝑎𝑗 with a low-dimensional vector.

𝑗 = 𝑎𝑗 ⋅ 𝐿𝑗 (1)

or a given feature field 𝑗, let 𝐿𝑗 ∈ R𝑐𝑗×𝑑 be an embedding matrix,
𝑗 an one-hot vector, 𝑐𝑗 the number of categories in this feature field,
nd 𝑑 the dimensions of the embedding vector. Additionally, to account
or multi-valued categorical features, such as the business scopes of a
ompany, we can transform 𝑎𝑗 into a probability distribution vector,
here each dimension denotes the importance of the related category.
or example, we can represent the revenue share of different business
ines of the company as 𝑎𝑗 .

To realize the feature crossing between categorical and numerical
eatures, we follow the method proposed by AutoInt (Song et al., 2019)
o represent the numerical features into a feature space, which dimen-
ion is same as the feature space of categorical features. Specifically, we
nitialize a learnable matrix 𝐵 ∈ R𝑘×𝑑 as a basis matrix, where the 𝑖-th

row represents the basis of the 𝑖-th numerical feature in a 𝑑-dimensional
feature space. The number of numerical features used in this task is
denoted as 𝑘. A given numerical feature 𝑎𝑖 can be expressed as follows:

𝑒𝑖 = 𝑎𝑖 ⋅ 𝑏𝑖 (2)

where 𝑏𝑖 ∈ 𝐵 is the basis vector of the numerical feature 𝑎𝑖.
After passing through the embedding layer, each raw input feature

𝑎𝑖 is represented by a 𝑑-dimensional embedding vector 𝑒𝑖. These vectors
are then collected into a tensor 𝑋(1) ∈ R𝑇×𝑛1×𝑑 as the sequential
embedding of the first rank features, where 𝑇 is the length of time
points, 𝑛1 is the total number of raw feature fields, and 𝑑 is the
embedding dimension.

3.3. Feature crossing module

When projecting both numerical and categorical features into the
same low-dimensional space, we can further model high-rank feature
combinations in the given representation space. Here, the challenge lies
in determining which features should be combined to form meaningful
higher-rank features. Traditionally, this has been partially addressed by
domain experts, who create meaningful combinations based on their
experience. However, human experts are limited to creating only low-
rank combinations, such as cost-benefit ratio, since it is impossible for
them to imagine and enumerate all high-rank feature combinations. To
address this issue, we use a neural network module, referred to as a
PFS module.

Recently, the self-attentive network (Vaswani et al., 2017) has
demonstrated remarkable performance in self-driven feature correla-
tion modeling, showing superior performance when modeling arbitrary
word dependencies in machine translation Raganato, Scherrer, and
Tiedemann (2020), Shaw, Uszkoreit, and Vaswani (2018) and long-
range dependencies of pixels in image analysis Cao, Xu, Lin, et al.
(2019). We further extend this technique to learn the correlations
between different ranks of features and generate effective higher-rank
feature combinations.

Specifically, we utilize the key-value attention mechanism to dy-
namically determine which feature combinations are meaningful. As
shown in Fig. 2, taking the generation of the 𝑖-th rank feature combina-
tions as an example, we explain how to identify meaningful high-rank
feature combinations from the candidate set, which is a set of all outer
products of features. We define the 𝑖 − 1-th rank features 𝑋(𝑖−1) ∈
R𝑇×𝑛𝑖−1×𝑑 as the input of a specific feature crossing module. Here,
𝑛𝑖−1 is the number of 𝑖 − 1-th rank features, and 𝑛1 = 𝑛 indicates
4

the number of the first rank features (both original categorical and
numerical features). We then perform a vector-level crossing product
operation between 𝑋(1) and 𝑋(𝑖−1).

𝑋(𝑖) = 𝑋(1) ⊗𝑋(𝑖−1) (3)

By adopting the key–value attention mechanism, we extract the query,
key and value information from 𝑋(1), 𝑋(𝑖−1) and 𝑋(𝑖), respectively.
The correlations of features between the query and key can then be
expressed as follows:

𝑎(𝑖)𝑚,𝑘 =
𝑒𝑥𝑝(𝛹 (𝑥(𝑖−1)𝑚 , 𝑥(1)𝑘 ))

∑𝑛𝑖−1
𝑗=1 𝑒𝑥𝑝(𝛹 (𝑥(𝑖−1)𝑗 , 𝑥(1)𝑘 ))

𝛹 (𝑥(𝑖−1)𝑚 , 𝑥(1)𝑘 ) =
⟨

𝑓 (𝑊𝑞𝑢𝑒𝑟𝑦, 𝑥
(𝑖−1)
𝑚 ), 𝑓 (𝑊𝑘𝑒𝑦, 𝑥

(1)
𝑘 )

⟩

(4)

where 𝑎(𝑖)𝑚,𝑘 is an element of 𝐴(𝑖) ∈ R𝑛1×𝑛𝑖−1 indicating the correlation
coefficient between the 𝑚-th feature 𝑥(𝑖−1)𝑚 ∈ 𝑋(𝑖−1) and the 𝑘-th feature
𝑥(1)𝑘 ∈ 𝑋(1). We use an attention function 𝛹 (∗, ∗) to calculate the
correlation between 𝑥(𝑖−1)𝑚 and 𝑥(1)𝑘 , where the calculation function is
the inner product of the input vectors. A lightweight convolution net
𝑓 (∗, ∗) is employed, which first aggregates the inputs 𝑥(𝑞)𝑝 ∈ R𝑇×1×𝑑 on
temporal dimension by a 𝑇 × 1 × 1 × 1 conv-layer, and then projects
the aggregated feature 𝑥̂ ∈ R𝑑 into a low-rank space R𝑧, where 𝑧 is the
dimension of the low-rank space. Additionally, 𝑊𝑞𝑢𝑒𝑟𝑦 and 𝑊𝑘𝑒𝑦 ∈ R𝑑×𝑧

are the learnable parameters for extracting query and key information
from the temporal aggregations, respectively. To learn the effectiveness
of the 𝑖-th rank features 𝑋(𝑖), we update the representation of the
crossing feature 𝑥(𝑖)𝑚,𝑘 ∈ 𝑋(𝑖) in 𝑑-dimensional feature space with residual
connections guided by attention coefficients:
𝑣(𝑖)𝑚,𝑘 = 𝑓 (𝑊𝑣𝑎𝑙𝑢𝑒, 𝑥

(𝑖)
𝑚,𝑘)

𝑥(𝑖)𝑚,𝑘 = 𝑔(𝑎(𝑖)𝑚,𝑘 ⋅ 𝑣
(𝑖)
𝑚,𝑘) + 𝑥(𝑖)𝑚,𝑘

(5)

Here, we adopt the Leaky Rectified Linear Units (LReLU) (Zhang, Pan,
Sun, & Tang, 2018) as the non-linear activation function 𝑔(∗), with
a negative slope of 0.1. Additionally, 𝑓 (∗, ∗) represents a convolution
layer with a filter kernel size of 1 × 1, having 𝑑 input channels and
𝑑 output channels. The learnable parameters of the convolution layers
are denoted as 𝑊𝑣𝑎𝑙𝑢𝑒 ∈ R𝑑×𝑧.

As the rank of the features increases, the number of corresponding
combinations grows exponentially. Enumerating all possible high-rank
features would lead to an exponential increase in memory and compu-
tation requirements. In fact, only a few high-rank features are effective
for the target task. To address this, we utilize a convolutional neural
network to construct a Principal Feature Selection (PFS) module, as
shown in Fig. 2. This module employs a point-wise convolutional
neural network, with lasso regularization (Zhao & Yu, 2006) applied
to the filters during the training stage, to explicitly extract meaningful
features and reduce computational costs. The implementation of the
PFS module is expressed as follows:

argmin
𝑊

𝐿(𝑦, 𝑓 (𝑊 ,𝑋(𝑖))) +
𝑐𝑜
∑

𝑘=1
‖𝑊∶,𝑘‖1 (6)

where 𝐿(∗, ∗) is the loss function for the target label 𝑦. A convolution
neural network 𝑓 (∗, ∗) is used in PFS module for explicitly extracting
meaningful features, where the number of input channels is 𝑐𝑖 = 𝑛1 ×
𝑛𝑖−1, and the number of output channels is a hyper-parameter 𝑐𝑜 = 𝑛𝑖.
The learnable parameters of convolution kernels 𝑊∶,𝑘 are imposed with
lasso, which makes most of the elements in 𝑊∶,𝑘 approach to zeros after
model training. This allows us to identify which feature combinations in
𝑋(𝑖) are useful for the target task by locating the non-zero values of 𝑊 .
Representations of meaningful feature combinations {𝑋(2), ..., 𝑋(𝑙)} and
their conditioned on attention weights {𝐴(2), ..., 𝐴(𝑙)} are then generated
using a battery of stacked 𝑙 − 1 feature crossing modules. Finally, 𝑁 =
∑𝑙

𝑖=1 𝑛𝑖 feature combinations with different ranks are collected by using
the concatenation operator ⊙.

𝑋 = 𝑋(1) ⊙𝑋(2) ⊙⋯⊙𝑋(𝑙) (7)

As a result, we obtain a mixed feature representation 𝑋 ∈ R𝑇×𝑁×𝑑

about the target task, wherein each feature has explicit combination

semantics. This representation has 𝑙 feature ranks.
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Fig. 2. Feature crossing block, where ⨁ indicates the element wise addition and ⨂ is a cartesian product. Grey cubes represent the convolutional networks.
̃

3.4. Dual attention module

Once the combination features are generated in the same low-
dimensional space, we further employ a feature attention module to
learn the influence of different features on the final enterprise credit
rating. To adaptively calculate the attention scores of each feature at
different time points, which indicate the correlations between the result
of enterprise credit rating and features, we assign each feature 𝑋𝑡,𝑖,∶ ∈ 𝐗̃
an attention score 𝑠𝑡,𝑖 through a convolution layer-based projector.

𝐴 = 𝑓 (𝑊 ,𝑋)

𝑎𝑡,𝑖 =
𝑒𝑥𝑝(𝑎𝑡,𝑖)

∑𝑇
𝑗
∑𝑁

𝑘 𝑒𝑥𝑝(𝑎𝑗,𝑘)
, 𝑎𝑗,𝑘, 𝑎𝑡,𝑖 ∈ 𝑆

(8)

Let 𝐴 ∈ R𝑇×𝑁 be the matrix of attention scores, where 𝑓 (∗, ∗) is a
convolution neural network with a filter kernel size of 1 × 𝑑, input
and output channels equal to the sequence length 𝑇 , and weights 𝑊 ∈
R𝑇×𝑇×1×𝑑 . 𝑓 (∗, ∗) calculates the attention scores through convolution
and reshape operations.

To preserve the information of previously learned combination fea-
tures, we add a residual connection to the end of this module. Formally,
the output of this module can be expressed as follows:

𝑋𝑡,𝑖,∶ = 𝑔(𝑠𝑡,𝑖 ⋅𝑋𝑡,𝑖,∶) +𝑋𝑡,𝑖,∶ (9)

where 𝑔(∗) represents the rectified linear units (ReLU), which can add
the non-linearity into the proposed model and select the meaningful
features.

3.5. Credit rating and model training

Enterprise credit is a reflection of the operational status of the en-
terprise, and is influenced by both long-term and short-term operations.
To balance efficiency and performance, we use Gated Recurrent Units
(GRUs) (Chung, Gülçehre, Cho, & Bengio, 2014) to model the long-
term and short-term dependencies of enterprise credit on the input
time series. GRUs are advantageous over Recurrent Neural Networks
(RNNs) as they overcome the vanishing gradients problem, and are
faster than Long Short-Term Memory (LSTM) networks (Hochreiter &
Schmidhuber, 1997).

Specifically, for the given company 𝑖, we concatenate the feature
vectors {𝑋(𝑖)}𝑙 outputted by the dual attention module to the same
5

𝑖=1
time point inputs of GRU for the final credit rating prediction.

𝑒𝑡 = 𝑋𝑡,1,∶ ⊙⋯⊙𝑋𝑡,𝑁,∶ (10)

Let 𝑒𝑡 be the 𝑡-th input vector of GRU, the formulations of GRU can be
expressed as follows:

𝑢𝑡 = 𝜎(𝑊𝑢 ⋅ [ℎ𝑡−1, 𝑒𝑡])

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑒𝑡])

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ̃ ⋅ [𝑢𝑡 ∗ ℎ𝑡−1, 𝑒𝑡])

ℎ𝑡 = 𝑧𝑡 ∗ ℎ̃𝑡 + (1 − 𝑧𝑡) ∗ ℎ𝑡−1

(11)

Here, the GRU are realized with the sigmoid activation function 𝜎(∗),
the tanh activation function 𝑡𝑎𝑛ℎ(∗), the learnable feature projected
matrices 𝑊𝑢, 𝑊𝑧 and 𝑊ℎ̃, where the ∗ in 𝜎(∗) and 𝑡𝑎𝑛ℎ(∗) represents
the element-wise product, ℎ𝑡 is the 𝑡-th hidden states of GRU. We
utilize the last hidden state ℎ𝑇 of GRU as the low-dimensional feature
representation of the company and predict the company’s credit rating
as follows:

𝐫 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝐹𝐶 (𝑊𝐹𝐶 , ℎ𝑇 )) (12)

A fully connected layer 𝑓𝐹𝐶 (∗, ∗) is used to project the final credit rating
representation of a company, ℎ𝑇 , into a credit ratings distribution
vector 𝐫. This projection is conducted by the matrix 𝑊𝐹𝐶 ∈ R𝑐×𝑛, where
𝑛 is the dimension of ℎ𝑇 and 𝑐 is the number of ratings. The final
predicted rating of the company 𝑦 = 𝑖𝑛𝑑𝑒𝑥(𝑚𝑎𝑥(𝐫)) is the index of the
maximal element in the credit ratings distribution vector 𝐫.

To effectively train the proposed model, we leverage a loss function
𝐿𝑞 (Zhang & Sabuncu, 2018) which is situated between a regression
loss (e.g., MAE loss) and a classification loss (e.g., cross entropy loss)
to supervise the learning process. This is done for two reasons: 1) credit
rating tasks can be realized through either classification or regression;
and 2) MAE loss usually has good generalization but lacks fitting
ability, whereas cross entropy loss is the opposite. Our training process
is formally expressed as follows:

argmin
W

𝐿𝑞(𝑦𝑗 , 𝑦𝑗 ) +
𝑙

∑

𝑖=2

𝑐𝑜
∑

𝑘=1
‖𝑊 (𝑖)

∶,𝑘‖𝑙1

𝐿𝑞(𝑦𝑗 , 𝑦𝑗 ) =
1 − (𝑦𝑗 ⋅ 𝑙𝑜𝑔 𝑦𝑗 )𝑞

𝑞

(13)

where W denote the learnable parameters of the proposed model,
which are updated by minimizing the total loss using gradient descent.
For 𝑊 (𝑖) ∈ W, this represents the learnable parameters of the PFS
∶,𝑘
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module in the 𝑖-th feature crossing module (Section 3.3). 𝑦𝑗 is the 𝑗-th
element in the predictive vector 𝑦, and 𝑞 ∈ (0, 1] is a hyper-parameter
that allows for tuning of the supervised learning between classification
and regression. The loss function is equivalent to a cross entropy loss
when 𝑞 → 0, and to a MAE loss when 𝑞 = 0. In this work, we set 𝑞 to
0.5 as a hyper-parameter.

4. Explainable enterprise rating

Through the interpreter shown in Fig. 1, we attempt to generate
two types of explanations: global explanations for the rating model and
individual explanations for each rating result. These explanations can
be rationalized from various perspectives, such as the training data,
model reliability, and individual samples.

Owing to the imposition of lasso regularization on the parameters
of PFS modules, most of the weights about feature combinations tend
to zero after model training. Thus, given a dataset and a trained
model, we can identify the meaningful feature combinations for the
target task by indicating the non-zero weights. Here, we assume the
useful combination patterns 𝛺 = {𝑆(𝑙)

|𝑙 ∈ [1, 2,… , 𝐿]}, where 𝑆(𝑙) =
{𝑠(𝑙)𝑗 |1 ≤ 𝑗 ≤ 𝑛𝑙 , 𝑠

(𝑙)
𝑗 = 𝑖𝑛𝑑𝑒𝑥(𝑚𝑎𝑥(𝑊 (𝑙)

∶,𝑗 ))} is the meaningful feature
combinations of the 𝑙th rank, and 𝑖𝑛𝑑𝑒𝑥(𝑚𝑎𝑥(𝑊∶,𝑗 )) returns the 𝑗th
meanful feature combination from the set indicated by the non-zero
weight. By examining the global explanations, i.e., 𝛺, financial experts
can verify the trained model to determine whether bias caused by the
training sets is evident, and they can explore new financial indicators
for the enterprise credit rating task.

Moreover, personalized explanations for each prediction can be
obtained by mining the attention cues of the feature crossing and dual
feature attention modules. Specifically, given an attention score matrix
𝑆 ∈ R𝑡×𝑛 generated from the dual feature attention module for a
company, personalized explanations for the prediction can be generated
by followed recursive tracking algorithm.

{𝑒1, 𝑒2,… , 𝑒𝑘} = topk(𝐸)

𝐸 = 𝑚𝑎𝑥(𝐫) ⋅ 𝑆

𝛿(𝑒𝑖) = 𝐸𝐾(𝑒𝑖) ⋅
∏𝐿

𝑙
∏

𝑠∈𝜋(𝑆(𝑙) ,𝑒𝑖)
𝐴(𝑙)

𝐼(𝑠) ⋅ 𝑚𝑎𝑥(𝑊
(𝑙)
∶,𝐽 (𝑠))

(14)

As the Eq. (14) shown, given the set of significant features of rating
prediction {𝑒1, 𝑒2, .., 𝑒𝑘}, their significance weights and indexes can be
obtained from the matrix 𝐸 ∈ R𝑡×𝑛 by the 𝐸𝐾(𝑒𝑖) and the 𝑡𝑜𝑝𝑘(𝐸),
respectively, where 𝑡𝑜𝑝𝑘(𝐸) returns the indexes of the top K maximal
elements in matrix 𝐸. The matrix 𝐸 can be treated as the weights of
the feature combinations at different time points. The 𝐫 is a distribution
vector of ratings of the company, which can be treated as the proba-
bilities on different rating classes, the confidence coefficient of rating
prediction then can be determined by 𝑚𝑎𝑥(𝐫). To further parse these
significant features’ components, we can recursively track their process
of generation by mining the global explanations 𝛺. The significance
of feature 𝑒𝑖 for a given prediction can be scored with 𝛿(𝑒𝑖), where
𝜋(𝑆(𝑙), 𝑒𝑖) is a subset of the 𝑙-th rank meaningful feature combinations
associated with 𝑒𝑖. The index functions 𝐼(𝑠), 𝐽 (𝑠) and 𝐾(𝑒𝑖) are used
to return the location of elements in the matrix 𝐴(𝑙), the associated
column of 𝑊 (𝑙) and 𝐸, respectively. Through the above calculation, the
interpreter allows to provide different explanations for different input
and prediction pairs.

5. Experiments

In this section, we aim to evaluate the effectiveness of the proposed
approaches on real-world datasets and attempt to answer the following
questions:

• What is the performance of the proposed model on the enter-
prise credit rating problem? Is it effective for large-scale, sparse,
high-dimensional, and multi-type data sets?
6
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• Is the proposed model and its outputs explainable? How can we
generate and understand the explanations using our proposed
methods?

• What impact do different model configurations have on predictive
performance?

5.1. Experimental setup

5.1.1. Datasets
We evaluate the proposed approaches using three real-world datasets

the CH-Stocks, CH-Rating, and US-Stocks1 datasets.
CH-Stocks collected the historical data of 7968 Chinese listed com-

panies from multiple data sources, which includes 23 first-rank finan-
cial features(shown in Appendix) from their IPO to the third fiscal
quarter of 2019. Investment analysts (Bellovwy & Don, 2005) have
suggested that a company’s revenue situation may be indicative of its
credit rating. For example, the revenue situation of Tech startups may
be an important indicator for investors to evaluate the company’s value
and credit. Therefore, in this experiment, we used the revenue situation
as an indirect proxy of company credit rating. We randomly split the
dataset into a training set (70%) and a testing set (30%), and classified
whether the revenue increased in the next fiscal quarter to indirectly
predict the credit rating of the company. The testing data contained
2451 Chinese listed companies, with 1493 being positive samples.

CH-Rating contains historical credit rating data of 1602 Chinese
companies, collected from ‘‘Wind Terminal’’. For each company, we can
access its financial, solvency, and operational features, as well as its
credit ratings. To predict the company’s credit rating for the following
fiscal quarter, we randomly split the dataset into a training set (70%)
and a testing set (30%) from the company dimension. Since the dataset
is composed of large, publicly traded companies, most of them have
favorable ratings. To address the uneven sample distribution problem
of this dataset, we rearranged the original 19 ratings into three: good,
normal, and bad. Specifically, the top 5 ratings are treated as good, the
following 4 ratings as normal, and the rest as bad.

US-Stocks contains over 200 financial indicators for all stocks of in
the US stock market from 2014 to 2018, which aimed to understand
whether it is possible to predict the future performance of a company
by looking at the financial information released in financial reports.
Empirical observations (Dichev & Piotroski, 2001) suggest that there
is a correlation between a company’s credit rating and its stock price
movement, i.e., when the company’s credit rating changes, its stock
price often also fluctuates. Thus, the stock price movement can be
treated as a proxy to reflect the credit situation of the company in
reverse. In this experiment, a company whose average stock price
increases in the next year was classified as having a positive rating,
and one whose stock price decreases was classified as having a negative
rating. The dataset was randomly split into a training set (70%) and a
testing set (30%), and the credit rating of the company was predicted
by classifying whether its stock price increased in the subsequent year.

The list of listed companies changes over time, so the data time
horizon varies for each company. As Fig. 3 shows, most companies
in the experimental datasets have a continuous record of around five
years. Therefore, we mainly trained and tested the proposed model with
five consecutive years on both the CH-Stocks and US-Stocks datasets.

5.1.2. Competing methods
We compared the proposed model to both deep learning-based

models (AutoInt (Song et al., 2019) and IFR-CNN (Hosaka, 2019)) and
conventional shallow models (Decision Tree (DT) (Xia et al., 2017),
Support Vector Machines (SVM) Chang and Lin (2011), Factoriza-
tion Machine (FM) (Rendle, 2012), Gradient Boosted Decision Trees

1 www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-
0142018.

http://www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-20142018
http://www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-20142018
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Fig. 3. Statistical distribution of the number of companies w.r.t. the time span.
𝐸

GBDT) (Ke, Meng, Finley, et al., 2017), Z-Score (Altman, 2013), and
ogistics Regression (LR) (Sohn, Kim, & Yoon, 2016)). Except for the
-Score, all raw features of a company over all time periods were
oncatenated as the input for the shallow models. While AutoInt and
FR-CNN were originally designed for click-through rate prediction and
ankruptcy prediction, respectively, we transform them to perform
nterprise credit rating prediction.
Z-Score is a classic enterprise credit rating model which considers

linear weighted sum of five financial indicators of public compa-
ies as the company’s credit score, i.e., working capital/total assets
𝑥1), retained earnings/total assets (𝑥2), earnings before interest and
axes/total assets (𝑥3), market value of equity/book value of total
iabilities (𝑥4), and sales/total assets (𝑥5). The score 𝑍 = 1.2𝑥1 +
.4𝑥2 +3.3𝑥3 +0.6𝑥4 +1.0𝑥5 is then used to rate the company by setting
xperience threshold scores: if 𝑍 < 1.81, the company is deemed a
ailure with a bad credit, and if 𝑍 > 2.67, the company has a good
redit.
LR is a popular choice for credit assessment, similar to the Z-Score

odel as it is a linear weighted model. However, the weights in LR
re learned from the training data. We used scikit-learn2 with an 𝐿1
enalty and the ‘‘liblinear’’ solver to realize the training algorithm.
he tolerance for the stopping criteria was set to 0.0001, while other
yper-parameters were kept at the default settings.
SVM3 is a classic and effective kernel-based model, especially in

igh-dimensional spaces, even when the number of dimensions is
reater than the number of samples. This makes it a popular choice in
he credit assessment field. In this experiment, the training algorithm
as realized using ‘‘libsvm’’, with ‘‘nu-SVC’’ and ‘‘rbf’’ kernel type

elected, and all other settings kept to their default configurations.
DT was a widely used algorithm for classification in finance. In this

xperiment, the maximum tree depth set to 5, the training algorithm
as implemented using scikit-learn, and the criterion for building the

ree was evaluated using Gini impurity.
FM is a general framework which uses factorization techniques to

odel second-rank feature interactions and can provide high predic-
ion accuracy. In this experiment, we used libFM4 and the adaptive
GD learning method with a learning rate 0.1, 500 iterations , and
efault configurations for other settings to model second-rank feature

2 scikit-learn.org/stable.
3 www.csie.ntu.edu.tw/cjlin/libsvm.
4
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www.libfm.org.
interactions of the financial indicators and predict the credit ratings of
companies.

GBDT is a boosting learning technique for both regression and
classification problems, which cab produce a prediction model in the
form of an ensemble of weak decision trees. In this experiment, we
realized the training algorithm using scikit-learn, setting the number
of estimators to 100 and the number of random states to 10. All other
hyper-parameters were left at their default values.

AutoInt5 was employed to automatically learn high-rank feature
interactions using multi-head self-attention, which maps both the nu-
merical and categorical features into the same low-dimensional space.
In this experiment, we set the number of heads and blocks to be 2
and 3, respectively, with a block shape of [64, 64, 64]. To ensure a fair
comparison, we employed AutoInt to obtain the feature representation
of a sample, and then used our dual feature attention module to
generate prediction.

IFR-CNN transforms the bankruptcy prediction to a task of image
classification by generating matrices of financial ratios. In this exper-
iment, we realize the matrix generation approach of IFR-CNN, and
generate the matrices of financial ratios by using the data of fiscal
quarter or year. Then, a binary classifier based on googlenet (Szegedy,
Liu, Jia, et al., 2015) realized by torchvision6 is trained and tested by
using those generated matrices. Its task is predicting the next situation
based on current data. In other words, it only leverages data from a
single time point data to make predictions.

5.2. Evaluation criteria

In binary classification problems, four types of predictions can be
obtained: true positives (TP), false positives (FP), false negatives (FN),
and true negatives (TN). To evaluate the predictive performance of
the compared models, we defined a confusion matrix as shown in
Table 1. We then used several indicators, such as accuracy, type I and II
errors, and area under the ROC curve (AUC), to obtain a comprehensive
evaluation. Based on the confusion matrix defined in Table 1, the
accuracy, type I and II errors can be defined as follows:

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃

𝑟𝑟1 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

𝐸𝑟𝑟2 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃

(15)

5 github.com/shichence/AutoInt.
6 github.com/pytorch/vision.

https://scikit-learn.org/stable
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.libfm.org
https://github.com/shichence/AutoInt
https://github.com/pytorch/vision
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Table 1
Confusion matrix of classifiers in this experiment. 𝑦 = 1 indicates that the model gives
the company a positive outlook, 𝑦 = 0 represents a negative outlook. 𝑔 = 1 indicates
that the actual credit rating of the company is positive, and 𝑔 = 0 is a negative outlook

Confusion matrix Ground truth

𝑔 = 1 𝑔 = 0

Prediction 𝑦 = 1 True Positive (TP) False Positive (FP)

𝑦 = 0 False Negative (FN) True Negative (TN)

Table 2
Performance of enterprise credit rating prediction of different models. In this experi-
ment, our model,i.e., DeepCross, was trained to be a third-rank model on CH-Stocks,
US-Stocks and CH-Rating which the output dimension of the embedding layer is 64.
The output dimensions of PFS modules in our stacked feature crossing modules are
[128,64,32], which indicate the numbers of feature combinations that are retained in
different rank feature crossing. DeepCross and AutoInt were trained and tested by using
the data with consecutive time, i.e., US-Stocks is 5 years data, CH-Stocks is 15 fiscal
quarters data and CH-Rating is 3 fiscal quarters data.

Model class Models CH-Stocks

Acc AUC Err1 Err2

First-rank
Z-Score 0.739 – 0.192 0.691
LR 0.946 0.955 0.033 0.038
SVM 0.793 0.846 0.222 0.093

High-rank
FM 0.824 – 0.184 0.137
GBDT 0.953 0.971 0.040 0.052
DT 0.931 0.962 0.055 0.085

Deep-rank
AutoInt 0.961 0.974 0.026 0.042
IFR-CNN 0.889 0.943 0.079 0.196
DeepCross 0.980 0.996 0.017 0.028

Model class Models US-Stocks

Acc AUC Err1 Err2

First-rank
Z-Score 0.559 – 0.279 0.587
LR 0.726 0.781 0.268 0.290
SVM 0.727 0.779 0.288 0.219

High-rank
FM 0.724 – 0.263 0.303
GBDT 0.750 0.828 0.255 0.228
DT 0.734 0.804 0.286 0.189

Deep-rank
AutoInt 0.750 0.787 0.246 0.265
IFR-CNN 0.713 0.701 0.303 0.366
DeepCross 0.772 0.834 0.230 0.253

Model class Models CH-Rating

Acc AUC Err1 Err2

First-rank
Z-Score 0.570 – – –
LR 0.978 0.799 – –
SVM 0.962 0.858 – –

High-rank
FM 0.952 – – –
GBDT 0.976 0.818 – –
DT 0.980 0.659 – –

Deep-rank
AutoInt 0.971 0.873 – –
IFR-CNN 0.975 0.819 – –
DeepCross 0.980 0.913 – –

where, 𝐴𝑐𝑐 indicates the accuracy of labels prediction by a given model.
𝐸𝑟𝑟1 and 𝐸𝑟𝑟2 are type I error and type II error, respectively. These
metrics provide insight into how well labels are predicted by a given
binary classification model.

To further evaluate the quality of models in this experiment, the
AUC (Area Under the Curve) of the ROC (Receiver Operating Char-
acteristic) is utilized to avoid the evaluation error caused by sample
imbalance. The ROC is a comprehensive indicator that reflects the
continuous variables of True Positive Rate and False Positive Rate. The
AUC value is between 0.5 and 1, with a higher value being indicative
of better performance.
8

5.3. Quantitative analysis

5.3.1. Evaluation of effectiveness
We summarize the quantitative results of company credit ratings

obtained by different models in Table 2. From the experimental results,
we observe that (1) machine learning based linear models, such as
LR and SVM, significantly outperform the statistics analysis-based Z-
Score model as they can adaptively fit the given dataset, which may be
more suitable for the company credit rating task on large-scale data. (2)
Surprisingly, the performance of Z-Score model on CH-Rating dataset
was worse than on CH-stocks. This may be due to the fact that the
modern enterprise rating system considers more information besides
the operation and financial situation of the enterprise, while the situa-
tion of the enterprise revenue is a more direct reflection of a company’s
operating and financial situation. Thus, the situation of the enterprise
revenue probably can be treated as an indirect proxy variable to study
the financial credit situation of the enterprise. (3) GBDT and DT,
which explore high-rank feature engineering, consistently outperform
the first-rank approaches by a large margin on all datasets, indicating
that using only first-rank features may be insufficient in company credit
rating prediction. (4) Deep learning models such as DeepCross, AutoInt,
and IFR-CNN, which benefit from the feature engineering capabilities
and the attention mechanism, typically achieve better performance
than other models. (5) The proposed model, DeepCross, obtains the best
performance, suggesting that using feature crossing modules to explore
deeper-rank feature interactions is essential. Note that the proposed
model shares the same structures on the embedding layer and credit
rating layer as AutoInt. (6) The deep learning-based model IFR-CNN
does not consistently show advantages compared to some of the shallow
models. The reason for this phenomenon may be that only leveraging
data from a single time point is not sufficient for the company credit
rating prediction task, as the company credit changes with time and it
may be a sequential process.

In conclusion, the proposed model outperformed all compared mod-
els. Specifically, compared to the most competitive baseline, AutoInt,
the proposed model was able to explore deeper-rank feature interac-
tions with similar resource consumption and was more efficient during
online inference. This was achieved through the stacked feature cross-
ing modules, which first perform explicit feature crossing via vectorized
Cartesian product, and then perform PFS using a one-dimensional
convolutional network.

5.3.2. Influence of different rank
The proposed model learns high-rank feature combinations by stack-

ing multiple feature crossing modules. We investigated the performance
of the proposed model in terms of parameter 𝑙, which is the rank of
feature combinations. As shown in Fig. 4, the performance typically
increased as the rank of the proposed model was increased, because
higher rank feature crossing means that more feature combinations
are used for prediction. However, the results obtained on two datasets
differed somewhat. When the range of feature rank was over 4, the
performance of the proposed model on the CH-Storcks dataset began to
decrease. The reason for this reduced performance is probably that the
number of first-rank features in CH-Storcks dataset is small, and there
may contain too many invalid feature combinations over the fourth-
rank. As a result, the number of training samples may be relatively
small compared to the feature dimension, leading to the proposed
model exhibiting over-fitting.

5.3.3. Influence of different time spans
We predict the credit ratings of companies by sequential modeling.

To investigate the feature of our model, we changed setting of the
parameter 𝑡, which is the time spans of data used to training and
testing. As shown in Fig. 5, the accuracy and AUC firstly increased
as we increased the time span on testing phase, since credit rating

of a company was changing over time. However, when the time span
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Fig. 4. Performance w.r.t. the rank of the model.
Table 3
Most important feature combinations on CH-Stocks dataset. The 𝑓𝑖 in table indicates a first-rank feature, which special
semantics can be queried in Appendix. 𝑙𝑖 is the rank of features.
Top-K 𝑙1 𝑙2 𝑙3 𝑙4

Feature Weight Feature Weight Feature Weight Feature Weight

1 𝑓16 0.3852 𝑓11, 𝑓16 0.1995 𝑓6, 𝑓16, 𝑓18 0.0177 𝑓4, 𝑓4, 𝑓7, 𝑓5 0.0500
2 𝑓14 0.0878 𝑓16, 𝑓18 0.1599 𝑓0, 𝑓3, 𝑓20 0.0177 𝑓0, 𝑓12, 𝑓16, 𝑓19 0.0499
3 𝑓13 0.0809 𝑓6, 𝑓16 0.1594 𝑓16, 𝑓16, 𝑓19 0.0177 𝑓3, 𝑓3, 𝑓9, 𝑓14 0.0250
4 𝑓12 0.0667 𝑓3, 𝑓14 0.1198 𝑓9, 𝑓12, 𝑓13 0.0177 𝑓11, 𝑓14, 𝑓15 , 𝑓17 0.0250
5 𝑓10 0.0593 𝑓12, 𝑓16 0.1198 𝑓8, 𝑓0, 𝑓20 0.0177 𝑓6, 𝑓10, 𝑓12, 𝑓22 0.0250
exceeded a certain range, the performance of our model began to
decrease on CH-Stocks. In contrast, with any time spans settings, the
proposed model achieved convergence on the training datasets, and
the convergence speed was accelerated as the time span was increased.
This phenomenon is likely due to the significant reduction of training
samples in CH-Stocks, which causes the trained model to suffer from
over-fitting, and the indirect proxy task we adopted on CH-stocks relies
heavily on the short term data. It further indicates that the number of
training samples can affect the fitting performance of the model, and
increasing the number of samples may be an effective way to improve
the proposed model’s performance if we want to obtain more accurate
rating prediction by using longer period’s data.

5.4. Explainable enterprise credit rating

A good enterprise credit rating system should provide accurate
evaluations with good explainability of the model. Here, we describe
the proposed model, which is able to provide accurate evaluations with
good explainability and explainable modeling process. Benefiting from
the dual attention modules and the feature crossing modules, the model
not only can predict the credit rating of a given company, but also can
generate static explanations for the modeling process.

By utilizing the PFS modules with lasso regularizations in the fea-
ture crossing modules, we can summarize the most important feature
combinations in different ranks of feature sets for a given dataset. As
Table 3 shows, we parsed the useful combination patterns and their
weights from PFS modules in a backtracking way (Section 4). This static
explanations allow human experts in the field of enterprise credit rating
to further investigate the trained model to determine if there is any bias
caused by the training datasets and model configurations. For example,
the combination of operation cycle (i.e., 𝑓 ) and capital return (i.e.,
9
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𝑓16) in the second-rank feature combinations, may be indicative of
a company’s debt paying ability, which is consistent with common
accounting principles. Additionally, Table 3 also shows that as the
rank increases, the weights of the feature combinations tend to be
zero. This suggests that high-rank features typically include a lot of
redundancy and noise, thus emphasizing the need for feature selection
in the proposed feature crossing module.

In the field of enterprise credit rating tasks, users are interested in
understanding the correlations between the features of a given sample
and the specific credit rating results. To this end, we further provide
a way to assess the credit rating of a given company by visualizing
the correlations between the most important feature combinations and
time points, as shown in Fig. 6. From the visualized results, we can
observe the following: (1) The features of the time points closer to the
rating time point are more influential to the result than the features
farther away from the rating time point, e.g., the features on 𝑡5 are
the most effective for both positive and negative samples. This is likely
due to the indirect proxy task, i.e., revenue situation prediction, relying
heavily on short-term information, which is suitable for monitoring the
short-term credit changes of a company. (2) The results of different
samples are affected by different features, verifying that our model can
output a personalized interpretation. (3) Some features are important
to both positive and negative samples, e.g., the net profit cut growth
rate (i.e., 𝑓13) can discriminate both.

In summary, the proposed model is highly explainable, providing
both global and personalized explanations. These explanations can help
financial experts evaluate the reliability of the trained models, and
enable users to comprehend the rating results.

6. Conclusion

In this paper, we propose a novel self-attention-based feature cross-
ing network for predicting enterprise credit ratings with high accuracy
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Fig. 5. Influence of different time spans in training and testing phases. In training phase, we adopted the method of stochastic gradient descent with 0.001 learning rate to train
our models.
and good explainability. Our model maps the original sparse, high-
dimensional features into low-dimensional spaces and explicitly models
the interactions of the high-rank features. We mine and visualize the
Cartesian product of attention maps of the proposed model to provide
both static and personalized explanations for a given sample and credit
rating pair. The experimental results confirm that our model has higher
prediction accuracy than traditional enterprise credit rating models and
can explain both the prediction results and the model’s training process.

However, the proposed model is still data-driven, and may suffer
from over-fitting when the number of training samples is small. To mit-
igate this issue, we plan to extend the model to support non-financial
information, such as news about companies and their propagation on
social media. This would allow us to extend expand the number of
samples, and include more non-listed companies in our experimental
datasets. Furthermore, we intend to obtain a more accurate company
representation by considering graph information, such as news diffu-
sion on social media, with graph structure attention. Finally, we plan to
conduct experiments to explore the relation between enterprise credit
10
rating and the indirect proxies used in this work, i.e., company revenue
and stock price.
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Fig. 6. Heatmap examples of input feature weights w.r.t time points. The weights were first normalized to [0, 1], and then mapped to the color space [0, 255]. The intensity of
the color blocks indicates the importance of the corresponding features. We show the seven most important features (the sum of weights on different time points is greater than
others). Here, 𝑓𝑖 indicates a feature, which special semantics can be queried in Appendix. 𝑡𝑖 is a time point and 𝑡5 is the predictive time point.
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Appendix

The raw features of the listed Chinese companies used in our
experiments are listed in Table A.4.
11
Table A.4
Attribute names of CH-Stocks dataset. 𝑓𝑖 indicates the feature number in our
explanation system.

NO. Annotation NO. Annotation

𝑓0 Industry category 𝑓1 Net profit
𝑓2 Net profit cut 𝑓3 Debt assets ratio
𝑓4 Earnings per share 𝑓5 Net assets value per share
𝑓6 Capital surplus fund per share 𝑓7 Undivided profit per share
𝑓8 Operation cash flow per share 𝑓9 Days sales of inventory
𝑓10 Accounts receivable turnover days 𝑓11 Operation cycle
𝑓12 Net profit growth rate 𝑓13 Net profit cut growth rate
𝑓14 Net profit ratio 𝑓15 Gross income ratio
𝑓16 Capital return 𝑓17 Return on equity
𝑓18 Inventory turning rate 𝑓19 Current ratio
𝑓20 Quick ratio 𝑓21 Conservative quick ratio
𝑓22 Debt equity ratio – –
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